Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986201

RESUMO

The micro- and macro-complications in diabetes mellitus (DM) mainly arise from the damage induced by Amadori and advanced glycation end products, as well as the released free radicals. The primary goal of DM treatment is to reduce the risk of micro- and macro-complications. In this study, we looked at the efficacy of aminoguanidine (AG) to prevent the production of early glycation products in alloxan-diabetic rabbits. Type1 DM was induced in rabbits by a single intravenous injection of alloxan (90 mg/kg body weight). Another group of rabbits was pre-treated with AG (100 mg/kg body weight) prior to alloxan injection; this was followed by weekly treatment with 100 mg/kg of AG for eight weeks. Glucose, insulin, and early glycation products (HbA1C and fructosamine) were measured in control, diabetic and AG treated diabetic rabbits. The effects of hyperglycemia on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx), reduced glutathione (rGSH), nitric oxide, lipid peroxides, and protein carbonyl were investigated. Alloxan-diabetic rabbits had lower levels of SOD, CAT, Gpx, and rGSH than control rabbits. Nitric oxide levels were considerably greater. AG administration restored the activities of SOD, CAT, Gpx enzymes up to 70-80% and ameliorated the nitric oxide production. HbA1c and fructosamine levels were considerably lower in AG-treated diabetic rabbits. The observed control of hyperglycemia and amadori adducts in alloxan-diabetic rabbits by AG may be attributed to decrease of stress and restoration of antioxidant defenses.


Assuntos
Antioxidantes/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Guanidinas/administração & dosagem , Hiperglicemia/tratamento farmacológico , Aloxano , Animais , Antioxidantes/farmacologia , Estudos de Casos e Controles , Catalase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Esquema de Medicação , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Guanidinas/farmacologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Superóxido Dismutase/metabolismo
3.
J Cell Biochem ; 120(4): 4892-4902, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30260031

RESUMO

BACKGROUND: Research reports support the statement that oxidative stress and inflammation are well-known risk factors for chronic kidney disease (CKD) in patients with diabetes. This study was designed to ascertain the associated role of oxidative stress parameters and inflammatory markers in diabetes and related CKD among the north Indian population. METHODS: The study was divided into three groups as healthy subjects (group 1), patients with diabetes without complication (group 2), and with CKD (group 3). Serum levels of malondialdehyde (MDA) and nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) content were estimated in all individuals. Inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)-α were determined by enzyme-linked immuno-sorbent assay. RESULTS: MDA, protein carbonyl, and NO were significantly elevated in patients with type 2 diabetes as compared with healthy subjects (P ≤ 0.05). Total thiols content were found to be significantly decreased in patients with diabetes with CKD. The activity of antioxidant enzymes SOD, CAT, and GR showed a significant suppression in patients with type 2 diabetes with or without CKD as compared with healthy subjects. Nevertheless, the levels of proinflammatory cytokines IL-6 and TNF-α were significantly upregulated ( P ≤ 0.05) as compared with healthy subjects. CONCLUSION: Determination of antioxidant defense parameters and inflammatory markers contributes to understand the relationship between oxidative stress and inflammation on the development and prevention of chronic kidney disease in Indian patients with diabetes.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/sangue , Estresse Oxidativo , Biomarcadores/sangue , Catalase/sangue , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/patologia , Feminino , Glutationa Redutase/sangue , Humanos , Índia , Interleucina-6/sangue , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Superóxido Dismutase/sangue , Fator de Necrose Tumoral alfa/sangue
4.
J Zhejiang Univ Sci B ; 14(1): 40-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23303630

RESUMO

Peroxynitrite (ONOO(-)) is a powerful oxidant and nitrosative agent and has in vivo existence. The half life of ONOO(-) at physiological pH is less than 1 s. It can react with nucleic acids, proteins, lipoproteins, saccharides, cardiolipin, etc., and can modify their native structures. Action of ONOO(-), synthesized in the authors' laboratory by a rapid quenched flow process, on structural changes of commercially available RNA was studied by ultraviolet (UV), fluorescence, and agarose gel electrophoresis. Compared to native RNA, the ONOO(-)-modified RNA showed hyperchromicity at 260 nm. Furthermore, the ethidium bromide (EtBr) assisted emission intensities of ONOO(-)-modified RNA samples were found to be lower than the emission intensity of native RNA-EtBr complex. Agarose gel electrophoresis of ONOO(-)-modified RNA showed a gradual decrease in band intensities compared to native RNA, an observation clearly due to the poor intercalation of EtBr with ONOO(-)-modified RNA. Native and ONOO(-)-modified RNA samples were used as an antigen to detect autoantibodies in sera of patients with clinically defined breast cancer. Both direct binding and inhibition enzyme-linked immunosorbent assay (ELISA) confirmed the prevalence of native and 0.8 mmol/L ONOO(-)-modified RNA specific autoantibodies in breast cancer patients. Moreover, the progressive retardation in the mobility of immune complexes formed with native or 0.8 mmol/L ONOO(-)-modified RNA and affinity purified immunoglobulin G (IgG) from sera of breast cancer patients supports the findings of the direct binding and inhibition ELISAs. The peroxynitrite treatment to RNA at a higher concentration appears to have damaged or destroyed the typical epitopes on RNA and thus there was a sharp decrease in autoantibodies binding to 1.4 mmol/L ONOO(-)-modified RNA. It may be interpreted that cellular nitrosative stress can modify and confer immunogenicity on RNA molecules. Higher concentrations of nitrogen reactive species can be detrimental to RNA. However, the emergence of native as well as 0.8 mmol/L ONOO(-)-modified RNA as a novel antigen/substrate for autoantibodies in breast cancer patients indicates that, in future, these molecules might find a place on the panel of antigens for early diagnosis of breast cancer.


Assuntos
Autoanticorpos/sangue , Autoanticorpos/imunologia , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Ácido Peroxinitroso/sangue , RNA Neoplásico/sangue , Eletroforese em Gel de Ágar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Ácido Peroxinitroso/química , RNA Neoplásico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA